Abstract
Selenium (Se) is absolutely required for activity of 25-30 genetically unique enzymes (selenoenzymes). All forms of life that have nervous systems possess selenoenzymes to protect their brains from oxidative damage. Homeostatic mechanisms normally maintain optimal selenoenzyme activities in brain tissues, but high methylmercury (MeHg) exposures sequester Se and irreversibly inhibit selenoenzyme activities. However, nutritionally relevant amounts of Se can replace the Se sequestered by MeHg and maintain normal selenoenzyme activities, thus preventing oxidative brain damage and other adverse consequences of MeHg toxicity. Findings of studies that seem contradictory from MeHg exposure perspectives are entirely consistent from MeHg:Se molar ratio perspectives. Studies that have reported dose-dependent consequences of maternal MeHg exposures on child development uniformly involved seafoods that contained much more Hg than Se. Meanwhile more typical varieties of ocean fish contain much more Se than Hg. This may explain why maternal MeHg exposure from eating ocean fish is associated with major IQ benefits in children instead of harm. Therefore, instead of being avoided, ocean fish consumption should be encouraged during pregnancy. However, the safety of freshwater fish consumption is less certain. In freshwater fish, MeHg bioaccumulation and toxicity are both inversely related to Se bioavailability. Their Se can be far lower than their MeHg contents, potentially making them more dangerous than pilot whale meats. Therefore, to provide accurate and appropriate regulatory advice regarding maternal consumption of seafoods and freshwater fish, Hg:Se molar ratios need to be incorporated in food safety criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.