Abstract

Selenium-enriched Cardamine violifolia (SEC), a cruciferous plant, exerts excellent antioxidant and anti-inflammatory capacity, but its effect on hepatic function is unclear. This study investigated the effect and potential mechanism of SEC on hepatic injury induced by lipopolysaccharide (LPS). Twenty-four weaned piglets were randomly allotted to treatment with SEC (0.3 mg/kgSe) and/or LPS (100 μg/kg). After 28 days of the trial, pigs were injected with LPS to induce hepatic injury. These results indicated that SEC supplementation attenuated LPS-induced hepatic morphological injury and reduced aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities in plasma. SEC also inhibited the expression of pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) after the LPS challenge. In addition, SEC improved hepatic antioxidant capacity via enhancing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) concentration. Moreover, SEC downregulated the mRNA expression of hepatic myeloid differentiation factor 88 (MyD88) and nucleotide-binding oligomerization domain proteins 1 (NOD1) and its adaptor molecule receptor interacting protein kinase 2 (RIPK2). SEC also alleviated LPS-induced hepatic necroptosis by inhibiting RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) expression. These data suggest that SEC potentially mitigates LPS-induced hepatic injury via inhibiting Toll-like receptor 4 (TLR4)/NOD2 and necroptosis signaling pathways in weaned piglets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call