Abstract

The antibacterial activity of the probiotic bacterium Enterococcus faecium M-74 was assessed on De Man–Rogosa–Sharpe (MRS), Todd–Hewitt (T–H), M17 (M-17) and brain heart infusion (BHI) media with sodium selenite pentahydrate (+Se) and without sodium selenite pentahydrate (−Se) under aerobic or anaerobic conditions against nine bacterial pathogens. The highest antibacterial activity was found to be in the MRS medium under anaerobic conditions. There were no differences in the antibacterial activity between MRS(+Se) and MRS(−Se) media. The antimutagenic activity of MRS(+Se) and MRS(−Se) extracts after culture with E. faecium M-74 as well as of live and killed cells of E. faecium M-74 grown in the presence or absence of Se against the genotoxicity of ofloxacin (OFL) and acridine orange (AO) was determined in the Euglena gracilis assay. The MRS(+Se) extracts showed a significantly higher activity in reducing the genotoxicity of OFL and AO than MRS(−Se) extracts. The live cells of the probiotic strain M-74 exhibited higher antimutagenic activity than the killed bacterial cells, but differed depending on the mutagen used. However, the live bacterial cells grown in the presence of Se showed significantly higher antimutagenic activity. These results suggest a potential benefit for the future development of new Se-enriched probiotics exhibiting higher antimutagenic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.