Abstract
Coal mining can cause selenium (Se) contamination in US Appalachian streams, but linkages between water-column Se concentrations and Se bioaccumulation within Appalachian headwater streams have rarely been quantified. Using elevated specific conductance (SC) in stream water as an indicator of mining influence, we evaluated relationships between SC and Se concentrations in macroinvertebrates and examined dynamics of Se bioaccumulation in headwater streams. Twenty-three Appalachian streams were categorized into 3 stream types based on SC measurements: 1) reference streams with no coal-mining history; 2) mining-influenced, high-SC streams; and 3) mining-influenced, low-SC streams. Selenium concentrations in macroinvertebrates exhibited strong positive associations with both SC and dissolved Se concentrations in stream water. At 3 streams of each type, we further collected water, particulate matter (sediment, biofilm, leaf detritus), and macroinvertebrates and analyzed them for Se during 2 seasons. Enrichment, trophic transfer, and bioaccumulation factors were calculated and compared among stream types. Particulate matter and macroinvertebrates in mining-influenced streams accumulated high Se concentrations relative to reference streams. Concentrations were found at levels indicating Se to be a potential environmental stressor to aquatic life. Most Se enrichment, trophic transfer, and bioaccumulation factors were independent of season. Enrichment factors for biofilm and sediments and bioaccumulation factors for macroinvertebrate predators varied negatively with water-column Se. Our results increase scientific understanding of Se bioaccumulation processes in Appalachian headwater streams. Environ Toxicol Chem 2018;37:2714-2726. © 2018 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.