Abstract

Cancrinite crystals possessing parallel nanochannels are attractive for incorporation of guest materials and preparation of one-dimensional structures. In this work, we study variety of cancrinite crystals synthesized with Se inside their channels. Single crystal x-ray diffraction, polarized Raman, optical absorption, and luminescence spectra are investigated. It is shown that Se is stabilized in the form of Se22− and Se2− dimers located in the center of the channel and oriented along the channel. Different absolute and relative concentrations of Se22− and Se2− are obtained for different samples. The Se22− dimers at high concentration show tendency to organize linear chains. At low temperatures, quite strong interdimer bonding for both Se22− and Se2− is observed. Another important low-temperature effect is appearance of additional Raman bands, which are attributed to the vibrations of linear Se22− chains distorted by the incommensurate potential of cancrinite. Strong near-infrared polarized luminescence is observed for all samples. Photoionization of dimers is shown to be important step in the mechanism of the luminescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.