Abstract
Being common in chromatographic techniques internal standard method is rarely applied in electrochemical stripping determinations. One of the reasons for such rare use of this elegant quantification method is because optimal conditions of accumulation at the electrode for individual compounds producing a reproducible signal may vary significantly. These criteria are much stricter when selenium is in question due to very complex mechanism of its accumulation at mercury electrodes which implies simultaneous cathodic mercury dissolution and chemical reaction. Elements that are in the analytical step stripped cathodically from mercury electrodes are rare, further limiting the application of the internal standard method when electrochemical selenium determination is in question.In this work the possibility of using sulphide for selenium quantification by chronopotentiometric stripping analysis was investigated. Optimal experimental parameters were defined in two-component systems. Dimensionless factors defining the ratio of proportionality constants of the two elements were calculated for different selenium concentration ranges at different sulphide contents. Sulphide content that was chosen as adequate for selenium concentrations reasonably to be expected in food samples was 500µg/dm3. Determined detection limit of chronopotentiometric stripping determination of selenium by using a sulphide as an internal standard was 0.04µg/dm3 (RSD=7.6%; n=5). Defined quantification method was confirmed by analysing spiked standard solutions and standard reference material. The method was used for selenium determination in biscuit and pasta samples. Calculated contents were statistically compared with those obtained by using graphite furnace atomic absorption spectrometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.