Abstract

Selenium (Se) is an essential micronutrient that plays a crucial role in development and physiological processes. The present study aimed to investigate the effects of Se deficiency on pancreatic pathology and the potential mechanism in pigs. Twenty-four castrated male Yorkshire pigs were divided into two groups and fed a Se-deficient diet (0.007mgSe/kg) or a Se-adequate diet (0.3mgSe/kg) for 16weeks. The serum concentrations of insulin and glucagon, Se concentration, histologic characteristics, apoptotic status, antioxidant activity, free radical content, and major metabolite concentrations were analyzed. The results showed that Se deficiency reduced the concentrations of insulin and glucagon in the serum and of Se in pancreas, decreased the number of islets and cells in the local islets, and induced pancreatic apoptosis. Se deficiency caused a redox imbalance, which led to an increase in the content of free radicals and decreased the activity of antioxidant enzymes. Of 147 targeted metabolites judged to be present in pancreas, only hypotaurine and D-glucuronic acid had differential concentrations with the false discovery rate < 0.05. Pathway analysis using metabolites with differential expression (unadjusted P < 0.05, fold change > 1.4 or < 0.67) found that 8 glycolytic metabolites were significantly increased by Se-deficient, whereas most of the tricarboxylic acid cycle and pentose phosphate pathway metabolites were not significantly changed. Our studies indicated that Se deficiency-induced pancreatic pathology was associated with oxidative stress and enhanced activity of glycolysis, which may provide gaining insight into the actions of Se as a diabetogenic factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call