Abstract

Selenium (Se) is an essential trace element found in the body. Se deficiency and M1/M2 imbalance are closely related to inflammation. Heat stress can decrease immune function and cause inflammation. In order to investigate whether Se deficiency can aggravate pneumonia caused by heat stress and the role of M1/M2 imbalance in the occurrence of pneumonia, 100 AA broilers were divided into two groups and fed the conventional diet (0.2mg/kg Se) and the Se-deficient diet (0.03mg/kg Se). After 40days of feeding, the normal feeding group was randomly divided into a control group and a heat stress group. At the same time, the Se-deficient diet feeding group was randomly divided into a low Se group and a low Se heat stress group, with 25 chickens in each group. The model was established by exposure at 40℃. Six hours later, broilers were euthanized, and their lung tissues were collected. Hematoxylin and eosin staining, immunofluorescence, quantitative real-time PCR, and western blotting were used to detect lung histopathological changes and the expression of M1/M2 markers, nuclear receptor-κB (NF-κB) pathway genes, and heat shock proteins. Meanwhile, the activity and content of oxidative stress-related indices were also detected. We found that the expression of interleukin-1β, interleukin-6, interleukin-12, and tumor necrosis factor-α was upregulated and the expression of interleukin-2, interleukin-10, and interferon-γ was downregulated. Immunofluorescence showed that the expression of CD16 was increased, the expression of CD163 was weakened, and the M1/M2 imbalance was present. In addition, the NF-κB pathway was activated by the increased expressions of heat shock proteins and oxidative stress. There was an increase in malondialdehyde, nitric oxide, and inducible nitric oxide synthase content, while the activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase decreased, and the expression of NF-κB and cyclooxygenase-2 increased. These results suggest that low Se induces M1/M2 imbalance through oxidative stress activation of the NF-κB pathway and aggravates lung tissue inflammation caused by heat stress. This study offers a theoretical basis for exploring the pathogenesis of various kinds of inflammation induced by Se deficiency from the perspective of M1/M2 and provides a reference for the prevention of such diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call