Abstract

As a typical transition-metal dichalcogenides, vanadium diselenide (VSe2) is a promising electrode material for aqueous zinc-ion batteries due to its metallic characteristics and excellent electronic conductivity. In this work, we propose a strategy of hydrothermal reduction synthesis of stainless-steel (SS)-supported VSe2 nanosheets with defect (VSe2-x-SS), thereby further improving the conductivity and activity of VSe2-x-SS. Density functional theory calculations confirmed that Se defect can adjust the adsorption energy of Zn2+ ions. This means that the adsorption/desorption process of Zn2+ ions on VSe2-x-SS is more reversible than that on pure SS-supported VSe2 (VSe2-SS). As a result, the Zn//VSe2-x-SS battery showed more excellent electrochemical performance than Zn//VSe2-SS. The VSe2-x-SS electrode shows a good specific capacity of 265.2 mA h g-1 (0.2 A g-1 after 150 cycles), satisfactory rate performance, and impressive cyclic stability. In addition, we also have explored the energy-storage mechanism of Zn2+ ions in this VSe2-x-SS electrode material. This study provides an effective strategy for the rational design of electrode materials for electrochemical energy-storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.