Abstract

Disruption of the blood-brain barrier (BBB) is an important hallmark of sepsis-associated encephalopathy (SAE). Selegiline, a selective and irreversible inhibitor of monoamine oxidase type B, has been applied for the treatment of nervous disorders. In this study, we aimed to investigate whether selegiline has a protective capacity in the impairment of the BBB in both in vivo and in vitro experiments. In a sepsis mouse model, administration of selegiline ameliorated lipopolysaccharide (LPS)-induced impairment of BBB integrity. Additionally, treatment with selegiline increased the expression of the tight junction protein junctional adhesion molecule A (JAM-A) against LPS. Also, we found that selegiline inhibited the production of the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β. In an in vitro experimental model, bEnd.3 brain endothelial cells were exposed to LPS. Results indicate that stimulation with LPS significantly increased the permeability of bEnd.3 cells and reduced the expression of JAM-A, both of which were rescued by treatment with selegiline. Additionally, selegiline prevented the activation of the NF-κB/MLCK/p-MLC signaling pathway in LPS-challenged bEnd.3 cells. These results indicate that selegiline exerted a protective effect on BBB dysfunction, which might be attributed to the inhibition of the NF-κB/MLCK/p-MLC signaling pathway. These findings provide a basis for further research into the neuroprotective mechanism of selegiline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call