Abstract

A convenient and mild protocol for the gold-catalyzed intermolecular coupling of substituted indoles with carbonyl-functionalized alkynes to give vinyl indoles is reported. This reaction affords 3-substituted indoles in high yield, and in contrast to the analogous reactions with simple alkynes which give bisindolemethanes, only a single indole is added to the alkyne. The protocol is robust and tolerates substitution at a range of positions of the indole and the use of ester-, amide-, and ketone-substituted alkynes. The use of 3-substituted indoles as substrates results in the introduction of the vinyl substituent at the 2-position of the ring. A combined experimental and computational mechanistic study has revealed that the gold catalyst has a greater affinity to the indole than the alkyne, despite the carbon–carbon bond formation step proceeding through an η2(π)-alkyne complex, which helps to explain the stark differences between the intra- and intermolecular variants of the reaction. This study also demonstrated that the addition of a second indole to the carbonyl-containing vinyl indole products is both kinetically and thermodynamically less favored than in the case of more simple alkynes, providing an explanation for the observed selectivity. Finally, a highly unusual gold-promoted alkyne dimerization reaction to form a substituted gold pyrylium salt has been identified and studied in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.