Abstract

The characteristics of slow inward sodium currents arising in response to membrane depolarization were studied in experiments on isolated dialyzed neurons of the snailHelix pomatia when the calcium-chelating agent EDTA was added to the calcium-free external solution. Values of the relative permeability of the corresponding ionic channels, determined from the shift of the equilibrium potential, were: PNa+:PLi+: $$P_{NH_2 NH_3 } + :P_{OHNH_3 } $$ +=1.00:0.80:0.55:0.21. The ratio between these values for "fast" sodium channels was 1.00:1.04:0.44:0.19. The induced sodium current was blocked by D-600 and nifedipine, which block calcium channels, more effectively than the calcium current of the same membrane (the corresponding dissociation constants were 10−5 and 0.8·10−5 mole/liter for the induced sodium current compared with 2.6·10−5 and 2.3·10−5 mole/liter for the calcium current). It is postulated on the basis of these data that the calcium channels have a principal selective filter similar to that of sodium channels, but also an additional binding site for bivalent cations, which prevents entry of monovalent cations into the channel. The addition of calcium-chelating agents to the calcium-free external solution liberates this site and thereby modifies the calcium channel into a sodium channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call