Abstract

A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane's surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst's surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.