Abstract

Transglutaminases (TGs) are known to exhibit remarkable specificities not only for the Q (or Gln) sites but also for the K (or Lys) sites of proteins with which they react. To gain further insight into K-site specificity, we examined the reactions of dansyl-epsilon-aminocaproyl-GlnGlnIleVal with three chemically and structurally well-characterized proteins (bovine pancreatic ribonuclease A, bovine pancreatic trypsin inhibitor, and chicken egg white lysozyme), as catalyzed by TG2, a biologically important post-translational enzyme. The substrates represent a total of 20 potential surface sites for acylation by the fluorescent Gln probe, yet only two of the lysine side chains reacted with TG2. While the K1 site of ribonuclease and the K15 site of the trypsin inhibitor could be readily acylated by the enzyme, none of the lysines in lysozyme were modified. The findings lead us to suggest that the selection of lysine residues by TG2 is not encoded in the primary amino acid sequence surrounding the target side chain but depends primarily on its being positioned in an accessible segment of the protein structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.