Abstract

The performance of La0.9Sr0.1Co1−xNixO3 perovskite catalysts with different Ni substitution levels was evaluated in the Fischer-Tropsch (F-T) synthesis for higher alcohol production. It was found that Ni substitution improved the catalyst’s reducibility and had a positive effect on higher alcohol synthesis (HAS) from syngas. Only a limited amount of Ni ions can enter into the perovskite structure and then form Co-Ni alloy after reduction. Catalyst characterisation and activity test results indicate that the synergistic effects of the two metal species in the Co-Ni are responsible for the catalytic activity improvement. For high Ni-substituted perovskite catalysts (x≥0.5), the extra-lattice Ni segregates on the catalyst surface and promotes CO methanation during the F-T reaction. A significant deviation of methanol selectivity from the Anderson-Schulz-Flory (ASF) linear distribution was detected for catalysts containing both Ni and Co, suggesting that the alcohol formation mechanism is altered with nickel substitution in La0.9Sr0.1Co1−xNixO3 perovskite catalysts. The La0.9Sr0.1Co0.9Ni0.1O3 perovskite catalyst exhibited the highest selectivity towards higher alcohols. The effect of reaction temperature on the catalytic activity is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.