Abstract

The gene encoding the yeast mitochondrial outer membrane channel VDAC was subjected to site-directed mutagenesis to change amino acids at 29 positions to residues differing in charge from the wild-type sequence. The mutant genes were then expressed in yeast, and the physiological consequences of single and multiple amino acid changes were assessed after isolation and insertion of mutant channels into phospholipid bilayers. Selectivity changes were observed at 14 sites distributed throughout the length of the molecule. These sites are likely to define the position of the protein walls lining the aqueous pore and hence, the transmembrane segments. These results have been used to develop a model of the open state of the channel in which each polypeptide contributes 12 beta strands and one alpha helix to form the aqueous transmembrane pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.