Abstract

The chemokine superfamily can be subdivided into two groups based on their amino terminal cysteine spacing. The CXC chemokines are primarily involved in neutrophil-mediated inflammation and, so far, two human receptors have been cloned. The CC chemokines tend to be involved in chronic inflammation, and recently we have cloned a fourth leukocyte receptor for this group of ligands. Understanding what makes one receptor bind its range of agonists is important if we are to develop potent selective antagonist. We have started to investigate the molecular basis of this receptor selectivity by looking at why CC chemokines do not bind to the CXC receptors in several ways. First, we looked at the role of the three-dimensional structure of the ligand, and have solved the three dimensional structure of RANTES using nuclear magnetic resonance spectroscopy. The structure is similar to that already determined for the CC chemokine macrophage inflammatory protein-1 beta, and it has a completely different dimer interface to that of the CXC chemokine interleukin-8 (IL-8). However, the monomer structures of all the chemokines are very similar, and at physiological concentrations the proteins are likely to be monomeric. Second, by examining all the known CC and CXC chemokines, we have found a region that differs between the two subfamilies. Mutations of one of the residues in this region, Leu-25 in IL-8, to tyrosine (which is conserved at this position in CC chemokines) enables the mutant IL-8 to bind CC chemokine receptor-1 (CC-CKR-1) and introduces monocyte chemoattractant activity. Using other mutations in this region, we can show a direct interaction with the N-terminus of CC-CKR-1. Third, we have found that modification of the amino terminus of RANTES by addition of one amino acid makes it into an antagonist with nanomolar potency. Taken together, this data suggests a two-site model for receptor activation and for selectivity between CC and CXC chemokines, with an initial receptor contact provided by the main body of the chemokine, and activation provided by the amino terminal region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call