Abstract

Trinucleotide repeats (TRs) with abnormal lengths and atypical folding are implicated in various neurodegenerative diseases. The least stable cytosine-cytosine (C–C) mismatches in TRs when structuring into homoduplexes/hairpins have more chance in certain sequence contexts to preferentially adopt an extrahelical (E-motif) conformation with respect to those in polarity-inverted intrahelical counterparts. Herein, we designed a trihydroxyphenyl porphyrin ligand (POH3) to meet the challenge towards resolving the E-motif conformation. POH3 exhibited a specific 2:1 binding with DNAs adopting the E-motif cytosine conformation, independent of the TRs length. The trihydroxyl pattern was very crucial to gain the E-motif selectivity over the polarity-inverted counterparts via the complementary hydrogen bonding that occurred in the minor groove. Our work first elucidates the rationale in designing ligands to selectively resolve the E-motif nucleotides within TRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.