Abstract

Epitaxially integrating III-V lasers with Si-photonics is the key for compact, efficient, and scalable photonic integrated circuits (PICs). Here we present an investigation of a path forward in integrating III-V functionalities on industry-standard silicon-on-insulator (SOI) platforms using selective area hetero-epitaxy. Based on our recently developed methods of selectively growing device quality InP on (001)-oriented SOI wafers, we demonstrated InP stripes and segments, with dimensions varying from a few hundred nanometers to a few micrometers. The flexible epitaxy of InP on SOI together with the unique “bufferless” trait will enable efficient light interfacing with Si-based photonic devices using either evanescent or butt coupling schemes. We simulated the possibility of employing the micrometer-scale InP on insulator to realize electrically driven lasers and found that the metal induced optical loss is negligible when the InP dimension exceeds 4.0 μm. The potential of utilizing this selective area growth method to realize fully integrated Si-photonics is illustrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call