Abstract

Flexible, paper-based graphene and graphene oxides are now emerging as a new class of materials with a variety of applications in electrochemical devices, novel composites, antibacterial agents, separation membranes, and so on. But the tight layer and the poor permeability limit their applications in the fields requiring permeable layers and tunable layer spacing. We demonstrate that the temperature-dependent decomposition reaction of ammonium nitrate can be utilized to modulate the layer spacing of graphene oxide paper and modify its permeability. Unlike the commonly used intercalation method, our strategy enables the layer spacing of the paper to be expanded over large range (123%–20 000%) and avoids the occupation of layer room by guest molecules. Dependent on the expansion amplitude, the papers exhibit a variety of interesting applications, including the highly efficient exclusion of small organic molecules, the separation of ultrathin nanoparticles, and the loading of polar and nonpolar guest molecul...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.