Abstract

Plasmonic nanostructures serve as optical antennas for concentrating the energy of incoming light in localized hotspots close to their surface. By positioning nanoemitters in the antenna hotspots, energy transfer is enabled, leading to novel hybrid antenna-emitter-systems, where the antenna can be used to manipulate the optical properties of the nano-objects. The challenge remains how to precisely position emitters within the hotspots. We report a self-aligned process based on dry laser ablation of a calixarene that enables the attachment of molecules within the electromagnetic hotspots at the tips of gold nanocones. Within the laser focus, the ablation threshold is exceeded in nanoscale volumes, leading to selective access of the hotspot areas. A first indication of the site-selective functionalization process is given by attaching fluorescently labelled proteins to the nanocones. In a second example, Raman-active molecules are selectively attached only to nanocones that were previously exposed in the laser focus, which is verified by surface enhanced Raman spectroscopy. Enabling selective functionalization is an important prerequisite e.g. for preparing single photon sources for quantum optical technologies, or multiplexed Raman sensing platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.