Abstract

ARID1A is frequently mutated in colorectal cancer (CRC) cells. Loss of ARID1A function compromises DNA damage repair and increases the reliance of tumor cells on ATR-dependent DNA repair pathways. Here, we investigated the effect of ionizing radiation (IR), in combination with ATR inhibitors (ATRi) in CRC cell lines with proficient and deficient ARID1A. The concept of selective vulnerability of ARID1A deficient CRC cells to ATRi was further tested in an ex vivo system by using the ATP-tumor chemosensitivity assay (ATP-TCA) in cells from untreated CRC patients, with and without ARID1A expression. We found selective sensitization upon ATRi treatment as well as after combined treatment with IR (P<0.001), especially in ARID1A deficient CRC cells (P <0.01). Knock-down of ARID1B further increased the selective radiosensitivity effect of ATRi in ARID1A negative cells (P<0.01). Mechanistically, ATRi abrogates the G2 checkpoint (P<0.01) and homologous recombination repair (P<0.01) in ARID1A deficient cells. Most importantly, ex-vivo experiments showed that ATRi had the highest radiosensitizing effect in ARID1A negative cells from CRC patients. Collectively, our results generate pre-clinical and clinical mechanistic rationale for assessing ARID1A defects as a biomarker for ATR inhibitor response as a single agent, or in a synthetic lethal approach in combination with IR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.