Abstract

Mitochondria as cellular powerhouses are the preferential targets affected by thiophenols, an important class of highly toxic environmental pollutants, and are linked to the production of pathogenic reactive oxygen species (ROS) induced by trace thiophenol residues. For real-time and accurate sensing, it is critically important to develop highly sensitive fluorescent probes for the specific detection of mitochondrial thiophenols. Herein, we report the first mitochondria-targeted fluorescent probe (ROAL) to image thiophenols in living cells. The development of ROAL was based on a novel red-emitting rhodol derivative (ROAP). ROAL proved to be highly selective to thiophenols among various analytes including aliphatic thiols, and renders an ultrasensitive off-on fluorescence response to thiophenols with a remarkable detection limit (8.1 nM). The probe efficiently stains mitochondria with a high Pearson’s co-localization coefficient (0.95) using Mito Tracker Green FM as reference, thereby ensuring the specific detection of mitochondrial thiophenols in living HepG2 and HeLa cells. In particular, using this probe we for the first time proved that endogenous reactive oxygen species have the capacity to eliminate thiophenols in living cells, suggesting that thiophenols might induce cellular oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call