Abstract

The development of effective method for monitoring of endogenous hypochlorous acid (HClO) in vivo is of great significance for early diagnosis of lipopolysaccharide (LPS) induced acute liver injury. Herein, we report a polymer micelles-based ratiometric fluorescent probe (PM) based on the combination of intramolecular charge transfer (ICT) mechanism and fluorescence resonance energy transfer (FRET) principle for selective visualization of endogenous HClO in vivo. Upon the reaction of PM with HClO, the electron-donating thiourea moiety is oxidized and transformed into imidazoline moiety (electron-withdrawing group), resulting in a dramatic blue shift (˃100nm) in the fluorescence emission. The as-prepared PM shows good water dispersibility (100% aqueous media), fast response (<40s), high sensitivity (a detection limit of 1.75nM), and outstanding selectivity toward HClO over other ROS/RNS (50 equiv.). In addition, the vivo imaging experiments demonstrate that PM facilitates the visualization of endogenous HClO generation with LPS induced acute liver injury in zebrafish model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.