Abstract

AbstractDirect observation of the growth dynamics of 2D transition metal dichalcogenides (TMDs) is of key importance for understanding and controlling the growth modes and for tailoring these intriguing materials to desired orientations and layer thicknesses. Here, various stages and multiple growth modes in the formation of WS2 layers on different substrates through thermolysis of a single solid‐state (NH4)2WS4 precursor are revealed using in situ transmission electron microscopy. Control over vertical and horizontal growth is achieved by varying the thickness of the drop‐casted precursor from which WS2 is grown during heating. First depositing platinum (Pt) and gold (Au) on the heating chips much enhance the growth process of WS2 resulting in an increased length of vertical layers and in a self‐limited thickness of horizontal layers. Interference patterns are formed by the mutual rotation of two WS2 layers by various angles on metal deposited heating chips. This shows detailed insights into the growth dynamics of 2D WS2 as a function of temperature, thereby establishing control over orientation and size. These findings also unveil the important role of metal substrates in the evolution of WS2 structures, offering general and effective pathways for nano‐engineering of 2D TMDs for a variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.