Abstract

Value Difference Metric (VDM) is one of the widely used distance functions to define the distance between a pair of instances with nominal attributes only. Many approaches have been proposed to improve the performance of VDM. In this paper, we focus on the attribute selection approach and propose another improved Value Difference Metric. We call it Selective Value Difference Metric (SVDM). In order to learn SVDM, we investigate the attribute independence assumption held by VDM and then single out two effective attribute selection methods for SVDM. The experimental results on 36 UCI benchmark datasets validate the effectiveness of the proposed SVDM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.