Abstract
Two novel extraction chromatography resins (ECRs) containing two diglycolamide (DGA) -functionalized calix[4]arenes with n-propyl and isopentyl substituents at the amide nitrogen atom, termed as ECR-1 and ECR-2, respectively, were evaluated for the uptake of Th(IV) from nitric acid feed solutions. While both the resins were having a quite high Th(IV) uptake ability (Kd >3000 at 3 M HNO3), the uptake was relatively lower with the resin containing the isopentyl DGA, which appeared magnified at lower nitric acid concentrations. Kinetic modeling of the sorption data suggested fitting to the pseudo-second order model pointing to a chemical reaction during the uptake of the metal ion. Sorption isotherm studies were carried out showing a good fitting to the Langmuir and D-R isotherm models, suggesting the uptake conforming to monolayer sorption and a chemisorption model. Glass columns with a bed volume of ca. 2.5 mL containing ca. 0.5 g lots of the ECRs were used for studies to assess the possibility of actual applications of the ECRs. Breakthrough profiles obtained with feed containing 0.7 g/L Th(NO3)3 solution resulted in breakthrough volumes of 8 and 5 mL, respectively, for the ECR-1 and ECR-2 resins. Near quantitative elution of the loaded metal ion was possible using a solution of oxalic acid and nitric acid. A method for the separation of Th-234 from natural uranium was demonstrated for the possible application of ECR-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.