Abstract
Glioblastoma (GBMs) is an aggressive type of brain tumour, driven by immature neural stem cell-like cells that promote tumour growth and underlie resistance to conventional therapy. The GBM stem cells (GSCs) can exist in quiescent or dormant states and infiltrate widely into surrounding brain tissues, currently incurable with only around one-year median survival. Innovative therapeutic strategies for GBMs are urgently needed. Here we explore functionalized graphene oxide (GO) to assess their value as delivery vehicles for GBM therapeutics. Interactions and cellular responses were assessed in vitro using both classic cell lines and patient derived GSCs. Association between the functionalised GO and established GBM cell lines (serum grown ‘non-stem’ cells) was strong and resulted in decreased cell viability, increased cell oxidative stress, and changes in lipids composition in a concentration-dependent manner. Responses were more moderate in GSCs and were only observed at highest functionalised GO concentrations. However, no significant toxicity was detected in brain astrocytes and endothelial cells. These results indicate selective toxicity to highly proliferative GBM cell lines and patient GSCs, with minimal toxicity to normal neural cells and brain tissue. We conclude that a novel class of GBM-targeting graphene-based nanocarriers could be useful delivery vehicles for GBM therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.