Abstract

Cancer continues to be a growing burden, especially in the resource limited regions of the world, and more effective and affordable therapies are highly desirable. In this study, the effect of X-ray irradiation and four inhibitors, viz. those against epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2) was evaluated in lung, breast, and cervical cancer cell lines, including normal cell lines to determine and compare the potential therapeutic benefit of these treatment modalities. A clonogenic survival assay was used to determine the radiosensitivity and cytotoxicity of inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in the cell lines. From the data, the equivalent dose at which 50% of the cell populations were killed, for cancer and normal cells, was used to determine the relative cellular sensitivity to X-ray irradiation and inhibitor treatment. It was found that breast cancer cell lines were more sensitive to X-ray irradiation, whilst cervical and lung cancer cell lines were more sensitive to EGFR and PI3K/mTOR inhibitor therapy. These data suggest that patients with breast cancer possessing similar characteristics to MDA-MB-231 and MCF-7 cells may derive therapeutic benefit from X-ray irradiation, whilst EGFR and PI3K/mTOR inhibitor therapy may potentially benefit cancer patients possessing cancers similar to HeLa and A549 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call