Abstract

The transforming growth factor-β1 (TGF-β1), a polypeptide member of the TGF-β superfamily, has myriad cellular functions, including cell fate differentiation. We hypothesized that suppression of TGF-β1 signaling would improve the efficacy of neuronal differentiation during embryoid body (EB) development. In this study, mouse embryonic stem cells (ESCs) were allowed to differentiate into their neuronal lineage, both with, and without the TGF-β1 inhibitor (A83-01). After 8 days of EB suspension culture, the samples were examined by morphological analysis, immunocytochemistry and immunohistochemistry with pluripotent (Oct4, Sox2) and neuronal specific markers (Pax6, NeuN). The alteration of gene expressions during EB development was determined by quantitative RT-PCR. Our results revealed that the TGF-β1/ALK inhibitor potentially suppressed pluripotent gene (Oct4) during a rapidly up-regulation of neuronal associated genes including Sox1 and MAP2. Strikingly, during EB development, the expression of GFAP, the astrocyte specific gene, remarkably decreased compared to the non-treated control. This strategy demonstrated the beneficial function of TGF-β1/ALK inhibitor that rapidly and uniformly drives cell fate alteration from pluripotent state toward neuronal lineages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.