Abstract

Crushed stone powder and aluminum ash are industrial wastes, and effective utilization of these wastes has been highly expected. Since the main components of the two wastes are Si, Al and O, those wastes can be used as starting materials for synthesis of zeolites of which some types have been commercialized as catalysts and ion-exchangers. In this study, zeolites A and X well-known as practical materials were successfully synthesized with high purity using the two industrial wastes by a mild process based on two hydrothermal treatments with intermediate acid treatment. In the first hydrothermal treatment at 150 °C, quartz in the crushed stone powder was dissolved and acid-soluble hydroxysodalite (Na8(AlSiO4)6(H2O)2(OH)2) with Si/Al = 1 and sodium aluminosilicate (Na6(AlSiO4)6) were formed. Those compounds were dissolved with HCl aq. solution. The zeolites were successfully synthesized from the second hydrothermal treatment of the yellow dried filtrates at 80 °C in NaOH aq. solution. In the process proposed, removal of Ca from the crushed stone powder was effective to formation of zeolites A and/or X. Selective synthesis of zeolites A and X was achieved by controlling the acid treatment conditions. Furthermore, the effect of the drying condition of the filtrate obtained after the acid treatment was also investigated on the differences in the product phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call