Abstract
Hydrogenation of nitriles is an efficient and environmentally friendly route to synthesize symmetrical secondary amines, but it usually produces a mixture of amines, imines, and hydrogenolysis by-products. Herein we report a magnetic quaternary-component Pt-CuFe/Fe3 O4 nanocatalyst system for the selective synthesis of symmetrical secondary amines with ammonia borane as hydrogen donor. The catalyst with a low Pt loading (0.456 wt%) is the source of the activity, and the d-band electron transfer from Cu to Fe enhances the selectivity. This synergistic effect results in the transformation of benzonitrile to dibenzylamine with excellent conversion (up to 99 %) and nearly quantitative selectivity (up to 96 %) under mild reaction conditions, nevertheless, the reaction TOF is as high as up to 1409.9 h-1 . A variety of nitriles are suitable for the synthesis of symmetrical secondary amines. More importantly, unwanted hydrogenolysis byproducts, especially toluene, is not detected at all. In addition, the catalyst is magnetically recoverable, and it can be reused up to five times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.