Abstract
Titanosilicate with the MOR topology (Ti-MOR), postsynthesized from highly dealuminated mordenite and TiCl4 vapor through a solid–gas reaction, was highly active and selective for the liquid-phase ammoximation of dimethyl ketone (DMK) with ammonia and hydrogen peroxide. The parameters effecting the formation of the ammoximation product of dimethyl ketone oxime were investigated systematically in a batch-type reactor, and the optimized conditions were further applied to continuous ammoximation of DMK in a slurry reactor. Ti-MOR was superior to other titanosilicates in terms of activity and lifetime. TS-1 was not suitable for the ammoximation of DMK, whereas Ti-MWW required a higher catalyst loading to reach a reasonable activity, and they both easily produced a main byproduct of oxidative coupling of dimethyl ketone oxime. The deactivation behavior of Ti-MOR was investigated. Ammonia-induced structural desilication and accompanied Ti sites migration altered a more serious influence on the catalyst duration than coke deposition during continuous ammoximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.