Abstract
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.