Abstract

The prevalence of sulfonamide residues in aquatic environments poses serious environmental risks, and the sensitive detection and effective degradation of sulfonamides have attracted widespread attention. Here, the environmentally friendly chitosan (CS)/carbon nitride (CN) with three-dimensional porous structure is fabricated by freeze-drying method, and subsequently a new bifunctional flexible substrate (CS/CN/Ag) is prepared by anchoring of small sized AgNPs (6 ∼ 12 nm) on CS/CN. Importantly, the CS/CN/Ag substrate shows high adsorption capacity (∼ 83.06%) for sulfamethoxazole (SMX) solution within 20 mins and the limit of detection can be as low as 7.46 × 10−9 mol·L−1 with an enhancement factor of 3.3 × 105. Also, the CS/CN/Ag substrate displays highly selective for surface-enhanced Raman spectroscopy (SERS) detection of sulfonamides and also shows excellent SERS response for SMX in hospital wastewater samples. In addition, the photocatalytic degradation efficiency of SMX could reach as high as 99.22% within 20 mins of irradiation and the CS/CN/Ag still maintains outstanding photocatalytic performance after six cycles. Moreover, the Ag content in the CS/CN/Ag substrate is only 2.35%, and also the CS/CN/Ag exhibits good uniformity, repeatability, recyclability and stability. Therefore, this flexible and cost-effectively substrate of CS/CN/Ag shows great potential for the simultaneous SERS detection and photocatalytic degradation of pollutants in actual wastewater samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.