Abstract

The purpose of this work was to electrically activate small-diameter motor fibers in the sacral anterior roots innervating the urinary bladder, without activating the large-diameter fibers to the sphincter. Quasitrapezoidal current pulses were applied through tripolar spiral nerve electrodes on selected anterior sacral roots during acute experiments on eight dogs, maintained under pentobarbital anesthesia. Pressures were recorded from the bladder and sphincter with catheter-mounted gauges. Stimulation with biphasic quasitrapezoidal pulses showed decrease in sphincter recruitment with increasing pulse amplitudes. The minimum current amplitude that resulted in maximum sphincter suppression was used to stimulate the roots with trains of 20 Hz pulses, with 60 mL of saline filling the bladder. Pressures were also recorded when 100 micros rectangular pulse trains at 20 Hz, both continuous and intermittent, were applied. Trains of stimuli were applied before and after dorsal root rhizotomy. Suppression of sphincter activation was defined to be a percentage, [(Maximum pressure -Minimum pressure)/Maximum pressure x100. The results from 22 roots in eight animals show that with single pulses, the average percentage suppression of sphincter activation was 76.3% (+/-14.0). The minimum current for maximum sphincter suppression was 1.29 mA (+/-0.62). The average bladder pressure evoked was 50 cm of water during pulse train stimulation, with no significant difference due to pulse type. With pulse trains, the sphincter pressures were significantly higher when the bladder was filled. Evacuation of fluid occurred in three animals with average flow rates of 1.0 mL/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.