Abstract

The effect of the administration of Thonningia sanguinea (T. S.) on the abundance of individual components of the cytochrome P450 monooxygenase enzyme was examined using Western blotting and competitive reverse-transcriptase-polymerase chain reaction (RT-PCR). We also investigated the time-course of inhibition of T. S. on drug metabolizing enzymes. A single intraperitoneal dose of T. S. extract (5 ml/kg) suppressed CYP, cytochrome b 5 and NADPH-CYP reductase activity by 45%, 34% and 22% respectively 24 h after T. S. adminstration. While T. S. did not have any significant effect on microsomal glutathione S-transferase activity, it inhibited p-nitrophenol hydroxylase (PNPH, CYP2E1) and 7-methoxyresorufin O-demethylase (MROD, CYP 1A2) activities by 37% and 32% respectively at 12 h post-T. S. administration. PNPH, erythromycin N-demethylase (ERDM, CYP 3A1/2) and MROD activities were inhibited by 28–36% 24 h after T. S. injection. Consistent with these observations, the levels of CYP2E1, CYP1A2 and CYP3A2 proteins were also suppressed 24 h post-T. S. administration. While CYP2E1 mRNA was unaffected by T. S. administration, CYP1A2 and CYP3A2 mRNAs were decreased by T. S. Cytosolic glutathione S-transferase activity was increased by 30%, 6 h after T. S injection. These data demonstrate that administration of T. S. differentially affect CYP isoforms in the liver of rats and that T. S. selectively suppresses CYP3A2 and CYP1A2 gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call