Abstract
We evaluated the ability of hyperosmolar stimuli to activate afferent nerves in the guinea pig trachea and main bronchi and investigated the neural pathways involved. By using electrophysiological techniques, studies in vitro examined the effect of hyperosmolar solutions of sodium chloride (hypertonic saline) on guinea pig airway afferent nerve endings arising from either vagal nodose or jugular ganglia. The data reveal a differential sensitivity of airway afferent neurons to activation with hypertonic saline. Afferent fibers (both A delta and C fibers) with cell bodies located in jugular ganglia were much more sensitive to stimulation with hypertonic saline, compared with afferent neurons with cell bodies located in nodose ganglia. Additional studies in vivo demonstrated that inhalation of aerosols of hypertonic saline induced plasma extravasation in guinea pig trachea that was mediated via tachykinin NK1 receptors. Identification of a differential sensitivity of guinea pig airway afferent nerves to hypertonic saline leads to the speculation that airway responses to hyperosmolar stimuli may result from activation of afferent neurons originating predominantly from the jugular ganglion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.