Abstract

4-Amino-3-hydroxy-2-(2-chlorobenzene)-azo-1-naphthalene sulfonic acid (AHCANSA) was used as a chelating modifier to improve the reactivity of the silica gel surface in terms of selective binding and extraction of heavy metal ions. The surface coverage values were found to be 0.488 and 0.473 mmol g−1 for the newly modified physically adsorbed silica gel phase (I) and chemically immobilized-AHCANSA phase (II), respectively. The modified silica gel phases (I, II) were tested for stability in different acidic buffer solutions (pH 1–6) and found to be highly resistant to hydrolysis and leaching by buffer solutions above pH 2. The application of these two phases as solid extractors for a series of mono-, di-, and tri-valent metal ions from aqueous solutions was also performed with different controlling factors such as the pH value of metal ion solutions and equilibrium shaking time. The mmol g−1 metal capacity values determined by silica gel phases (I, II) were found to confirm high affinity and selectivity characters for binding with heavy metal ions such as Cr3+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ in a range of 0.250–0.483. The tested alkali and alkaline earth metals, Na+, K+, Mg2+ and Ca2+, were found to exhibit little interaction and binding ability with the modified silica gel phases. The selectivity characters incorporated into the modified silica gel phases were further utilized and applied in solid phase extraction and pre-concentration of trace concentration levels (∼1.0 µg mL−1 and 2.00–2.50 ng mL−1) from real seawater samples. The percentage recovery values determined for Cr3+, Cu2+, Zn2+, Cd2+ and Pb2+ were found to be in the range of 95.2–98.1±2.0–5.0%, and the pre-concentration recovery values for the same tested heavy metal ions were found to be in the range of 92.5–97.1±3.0–6.0% for the two newly modified silica gel phases with a pre-concentration factor of 500.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.