Abstract

Selective cleavage of a silicon-carbon bond in tetraorganosilanes is still a great challenge. A new type of Si-C(sp3 ) bond cleavage in bench-stable (aminomethyl)silanes with common organolithium reagents as nucleophiles has now been identified. Suitable leaving groups are benzyl, allyl, and phenylthiomethyl groups. A β-donor function and polar solvents are essential for the reaction. Simple switching between α-deprotonation and substitution is possible through slight modifications of the reaction conditions. The stereochemical course of the reaction was elucidated by using a silicon-chiral benzylsilane. The new transformation proceeds stereospecifically with inversion of configuration and can be used for the targeted synthesis of enantiomerically pure tetraorganosilanes, which are otherwise difficult to access. Quantum chemical calculations provided insight into the mechanism of the new substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.