Abstract
We present here a low-temperature (Ts<630 °C) process for the selective epitaxial growth of Si that employs atomic hydrogen. Modulation of both the substrate temperature and the flux of atomic hydrogen gives alternating growth and suppression/etching cycles, resulting in a significant increase in selectivity. Epitaxial thin-film quality is essentially unaffected, as verified by in situ analysis via low-energy electron diffraction, and ex situ analysis via scanning electron and atomic-force microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.