Abstract
The hydridic hydrogen in nanogold catalysts has long been postulated as an important intermediate in hydrogenation reactions, but it has not been directly observed. Here, we report the synthesis of a new undecagold cluster with a bidentate phosphine ligand. The chelating effects of the bidentate ligand result in a more symmetric Au11 core with two labile Cl- ligands that can exchange with BH4-, leading to a novel undecagold hydride cluster. The new hydride cluster is discovered to readily undergo hydroauration reaction with alkynes containing electron-withdrawing groups, forming key gold-alkenyl semihydrogenation intermediates, which can be efficiently and selectively converted to Z-alkenes under acidic conditions. All key reaction intermediates are isolated and characterized, providing atomic-level insights into the active sites and mechanisms of semihydrogenation reactions catalyzed by gold-based nanomaterials. The hydridic hydrogen in the undecagold cluster is found to be the key to prevent over hydrogenation of alkenes to alkanes. The current study provides fundamental insights into hydrogenation chemistry enabled by gold-based nanomaterials and may lead to the development of efficient catalysts for selective semihydrogenation or functionalization of alkynes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.