Abstract
We propose and test a Bayesian model of property induction with evidence that has been selectively sampled leading to “censoring” or exclusion of potentially relevant data. A core model prediction is that identical evidence samples can lead to different patterns of inductive inference depending on the censoring mechanisms that cause some instances to be excluded. This prediction was confirmed in four experiments examining property induction following exposure to identical samples that were subject to different sampling frames. Each experiment found narrower generalization of a novel property when the sample instances were selected because they shared a common property (property sampling) than when they were selected because they belonged to the same category (category sampling). In line with model predictions, sampling frame effects were moderated by the addition of explicit negative evidence (Experiment 1), sample size (Experiment 2) and category base rates (Experiments 3–4). These data show that reasoners are sensitive to constraints on the sampling process when making property inferences; they consider both the observed evidence and the reasons why certain types of evidence has not been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.