Abstract

We demonstrate experimentally a method of all-optical selective rotational control in gas mixtures. Using an optical centrifuge-an intense laser pulse whose linear polarization rotates at an accelerated rate, we simultaneously excite two different molecular species to two different rotational frequencies of choice. The new level of control is achieved by shaping the centrifuge spectrum according to the rotational spectra of the centrifuged molecules. The shaped optical centrifuge releases one molecular species earlier than the other, therefore separating their target rotational frequencies and corresponding rotational states. The technique is applicable to molecules with non-overlapping rotational spectra in the frequency range of interest and will expand the utility of rotational control in the studies of the effects of molecular rotation on collisions and chemical reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call