Abstract
The long-term success of dental implants relies not only on stable osseointegration but also on the integration of implant surfaces with surrounding soft tissues. In our previous work, titanium plasma immersion ion implantation (PIII) technique was applied to modify the carbon-fiber-reinforced polyetheretherketone (CFRPEEK) surface, constructing a unique multilevel TiO2 nanostructure thus enhancing certain osteogenic properties. However, the interactions between the modified surface and soft-tissue cells are still not clear. Here, we fully investigate the biological behaviors of human gingival fibroblasts (HGFs) and oral pathogens on the structured surface, which determine the early peri-implant soft tissue integration. Scanning electron microscopy (SEM) shows the formation of nanopores with TiO2 nanoparticles embedded on both the sidewall and bottom. In vitro studies including cell adhesion, viability assay, wound healing assay, real-time PCR, western blot and enzyme-linked immunosorbent assay (ELISA) disclose improved adhesion, migration, proliferation, and collagen secretion ability of HGFs on the modified CFRPEEK. Moreover, the structured surface exhibits sustainable antibacterial properties towards Streptococcus mutans, Fusobacterium nucleatum and Porphyromonas gingivalis. Our results reveal that the multilevel TiO2 nanostructures can selectively enhance soft tissue integration and inhibit bacterial reproduction, which will further support and broaden the adoption of CFRPEEK materials in dental fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.