Abstract

Dps is a nucleoid-associated protein that plays a major role in condensation of the Escherichia coli chromosome in stationary phase. Here we show that two other nucleoid-associated proteins, Fis and H-NS, can bind at the dps gene promoter and downregulate its activity. Both Fis and H-NS selectively repress the dps promoter, preventing transcription initiation by RNA polymerase containing sigma(70), the housekeeping sigma factor, but not by RNA polymerase containing sigma(38), the stationary-phase sigma factor. Fis represses by trapping RNA polymerase containing sigma(70) at the promoter. In contrast, H-NS functions by displacing RNA polymerase containing sigma(70), but not RNA polymerase containing sigma(38). Dps levels are known to be very low in exponentially growing cells and rise sharply as cells enter stationary phase. Conversely, Fis levels are high in growing cells but fall to nearly zero in stationary-phase cells. Our data suggest a simple model to explain how the Dps-dependent super-compaction of the folded chromosome is triggered as cell growth ceases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call