Abstract
Natural organic matter (NOM), such as humic acids, fulvic acids, and tannic acids, is ubiquitous in water bodies and hinders the photodegradation of pharmaceuticals and personal care products (PPCPs). We prepared titanium incorporated hierarchical diatoms as a novel photocatalyst to selectively remove PPCPs (triclosan, bisphenol A or BPA, and N, N-Diethyl-meta-toluamide or DEET) in the presence of NOM (humic acid). Diatom (Stephanodiscus hantzschii) grown in a titanium(IV) bis(ammonium lactato) dihydroxide solution integrated 7.2% ± 1.4% (mass fraction) of titanium in their cell wall and formed silica-titania frustules. The photodegradation of triclosan, BPA, and DEET by both silica-titania frustules and titania nanopowder (a control photocatalyst) follows pseudo-first-order kinetics. Under ultraviolent light irradiation, the titanium-content-normalized pseudo-first-order removal rate constants of triclosan, BPA, and DEET by silica-titania frustules were 3, 4, and 4-times those by titania nanopowder, respectively, at a humic acid concentration of 10 mg•L−1. Incorporation of titanium did not alter the morphology and hierarchical nano/microstructures of the diatom. The silica-titania frustules were rich in nanopores with a diameter of 20 ± 4 nm (mean ± standard deviation), allowing PPCPs with a small molecular weight (typically < 600 g•mol−1) to pass through while efficiently rejecting NOM with high molecular weights. The silica-titania frustules with hierarchical nano/microstructures served as a prefiltration unit by selectively allowing PPCPs to pass through the nanopores and are therefore promising for photodegradation and environmental remediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.