Abstract
Perfluorobutyric acid (PFBA) is one type of perfluoroalkyl and polyfluoroalkyl substances (PFASs) and is widely used as an industrial compound. The removal of PFBA has attracted considerable scientific interests in recent decades because it causes environmental pollution and human diseases. Currently, the adsorption method has been used commonly to remove PFASs from wastewater. However, it is usually limited by the inevitable "secondary waste" produced in this treatment process. In this work, PFBA can be effectively removed by synergistic electrical switching ion exchange (ESIX) and a new type of nanostructured ion exchanger. Herein, the nanostructured ion exchanger has been designed and synthesized by coating a polypyrrole (PPy)@Fe2O3 nanoneedle on carbon cloth (PPy@Fe2O3 NN-CC). Results show that the PPy@Fe2O3 NN-CC nanocomposite enhances ion exchange speed and efficiency, which ensures its high adsorption capacity and rapid regeneration property, thereby reducing secondary waste. Moreover, ESIX based on the PPy@Fe2O3 NN-CC nanocomposite has high selectivity for adsorption of PFBA over other common anions in water, such as Cl-, SO42-, and NO3-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.