Abstract
(1) Treatment of erythrocytes with phospholipase A 2 from bee venom cleaves about 55% of the phosphatidylcholine in the outer membrane lipid layer without changing the discoid shape of the cells. All of the fatty acids and 80% of the lysophosphatidylcholine produced under this conditions can be sequentially extracted by bovine serum albumin without hemolysis of the cells. (2) The cells remain discoid up to extraction of all of the fatty acids and 15% of the lysophosphatidylcholine. Removal of a higher fraction of lysophosphatidylcholine induces formation of stomatocytes and sphero-stomatocytes, probably going along with an internalization of membrane vesicles. Stomatocytosis can be explained on the basis of the ‘bilayer couple hypothesis’ (Sheetz, M.P. and Singer, S.J. (1974) Proc. Natl. Acad. Sci. 71, 4457–4461). The shape change will compensate for the differences in surface pressure between the two leaflets induced by selective removal of material from the outer leaf of the bilayer. (3) Increasing the shear modulus of the membrane by diamide prevents this compensatory shape change even after extraction of up to 80% of the lysophosphatidylcholine, which amounts to a loss of 34% of the phospholipids of the outer membrane layer or 22% of its area. This leads to the interesting situation of a membrane possibly having a strikingly diminished ratio of the numbers of phospholipid molecules in the outer to that in the inner lipid layer. A marked difference in surface pressures should arise in this situation, unless other compensatory mechanisms become operative. Evidence for a compensation for outer lipid loss by a constriction of the inner layer has been obtained. A compensation by transbilayer reorientation of phospholipids could not be demonstrated. This latter observation supports the concept of a stabilisation of the asymmetric phospholipid arrangement by proteins such as spectrin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.