Abstract

In this study, a new composite adsorbent for Cr(VI) removal was developed by immobilizing polyethyleneimine (PEI) on the surface of zero-valent iron (ZVI) particles with tannic acid (TA) as a stabilizer. The adsorbent (denoted as Fe-TA-PEI-10) was easy to prepare and regenerate, requiring no conditions for storage. It was found to be particularly effective for Cr(VI) removal from wastewater via reduction and adsorption. Electrochemical analysis revealed that TA significantly reduced the electron transfer resistance of Fe-TA-PEI-10 and reduced the highly toxic Cr(VI)to the less toxic Cr(III). In addition, PEI endowed amino groups to Fe-TA-PEI-10, raising the zero charge point (pHpzc) of Fe-TA-PEI-10 (pHpzc= 7.80), allowing it to adsorb Cr(VI) from the solution rapidly under electrostatic forces and chelating effects. The adsorption process was consistent with the pseudo-first-order model (R2 >0.99) and the Langmuir isotherm model (R2 >0.99), and the maximum adsorption capacity could reach 161.6 mg/g. In particular, this study presented for the first time that TA-modified Fe(0) had excellent stability in the air, and the adsorbent showed no decrease in performance for Cr(VI) removal even after exposure to the air for 30 days. When tested with a simulated electroplating rinsing wastewater, the Fe-TA-PEI-10 showed very high selectivity for Cr(VI) removal. The mechanism of Cr(VI) removal with Fe-TA-PEI-10 was found to be based on adsorption and reduction. This work provided a new scheme for developing efficient and long-lasting reactive adsorbent for Cr(VI) removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call